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Abstract— A method is presented for evaluating the buckling load of weightless prismatic rigid bars
resting on uncertain foundations which are modeled using linear extensional elastic springs. The
uncertainty in the spring elements is expressed in terms of a nonprobabilistic convex model. An
ellipsoidal bound is used which defines the uncertainty of the foundation in terms of a size parameter
and the deviations of the elastic spring constants from their nominal values. The size parameter
represents the size of the ellipsoid and is analogous to the standard deviation magnitude in pro-
babilistic analyses. The semiaxes of the ellipsoid are the deviations of the foundation spring constants
from their nominal values and they determine the shape of the ellipsoid. A first-order analysis shows
that the reduction in the buckling load, when uncertainty in the foundation’s spring stiffnesses is
present, is a linear function of the size parameter and a nonlinear function of the semiaxes of the
uncertainty ellipsoid. For the same uncertainty in the spring elements, different reductions in the
buckling load result for beams with multimode buckling.

1. INTRODUCTION

Analysis of deterministic models is simpler than that of probabilistic models and in the
former case results that are useful in design can readily be obtained. Deterministic models
describe or predict the behavior of a structural system in which the outcome of an exper-
iment or analysis under a specified set of conditions occurs with certainty. Probabilistic
models are necessary when all that can be stated after studying many experiments or
analyses is that a given outcome occurs in some fraction of the total number of the trials
conducted. There is a tradeoff when detailed probabilistic information about a structural
system is eliminated to gain computational ease. It is possible that the loss of accuracy in
going from a probabilistic to a deterministic model is unacceptable. On the other hand,
probabilistic models require extensive information about the random variables and dis-
tribution functions of the model.

The buckling of columns with random initial displacements, or columns randomly
bent and initially twisted has been studied using Green'’s functions by Boyce (1961) and
Bernard and Bogdanoff (1971), respectively. Elishakoff (1979) investigated the buckling of
a stochastically imperfect column resting on a nonlinear elastic foundation using Monte
Carlo simulation. Liaw and Yang (1989) studied the reliability of beam—columns with
random geometric imperfections, uncertain material properties and uncertain moduli of
elastic foundations. The buckling strength of end-restrained metal columns was investigated
by Alibe (1990).

A new type of model! for structural systems is one which represents uncertainty in a
nonprobabilistic way. In this type of model, instead of using probabilistic procedures, an
alternative method for analysis of uncertainty is used when a limited amount of information
is available. This new type of model of structural systems with uncertainty is the convex
model (Ben-Haim and Elishakoff, 1990). Convex models provide a completely non-
probabilistic representation of uncertainty and one does not have to think in a stochastic
manner to construct them. A convex model of uncertainty is a set of functions specified by
global characteristics such as input load functions, spectral properties, or functions of
bounded energy. In effect, the convex model constrains uncertainty within a known bound.

In the problem of buckling of an elastic bar subject to axial compression with uncertain
eccentricity, a convex model was constructed using the uncertainty in the eccentricities at the
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Fig. 1. n-bar system on Winkler foundation with uncertain rotational and extensional springs.

ends of the bar (Ben-Haim and Elishakoff, 1990). The relationship between the maximum
bending moment in the bar vs a size parameter describing the convex model of uncertainty
in the end eccentricities was obtained. In the buckling of thin-walled shells, which are
sensitive to initial imperfections, a convex model was constructed from initial imperfection-
sensitivity functions of cylindrical shells (Ben-Haim and Elishakoff, 1989). The aim of the
analysis was to use fragmentary information about the initial imperfections of thin shells
in order to determine the buckling loads which may be expected. Convex models have also
been used to model uncertain imperfections in multimode dynamic buckling of cylindrical
shells under symmetric radial impulsive loads (Lindberg, 1992a, 1992b). It was found that
the maximum possible buckling deformations for any imperfection within uniform bounds
could be made comparable to the buckling deformations from the probabilistic models at
a reliability of 99.5%. The convex model has the advantage that its numerical evaluation
and interpretation is much simpler than the probabilistic model. In addition, the convex
model solution provides a means for quality control of each and every shell by simply
recording the uniform bounds from imperfection measurements.

The dynamics of a thin shell under impact with limited deterministic information on
its initial imperfections was investigated by Elishakoff and Ben-Haim (1990). The convex
model was described in terms of the dominant initial imperfection Fourier coefficients
within an ellipsoidal set. Convex models were also used to optimize the deployment of
pressure sensors to detect uncertain slender obstacles on surfaces by Ben-Haim (1992). An
energy-bound convex model was used to represent uncertainty in the initial deformation of
a uniform beam (Ben-Haim, 1993a). The initial deformation energy determined both the
degree of uncertainty in the initial beam shape and the maximum bending moment which
the loaded beam can attain. A convex model has also been used to study the radial pulse
buckling of shells in terms of initial geometrical imperfections in the shell shape (Ben-Haim,
1993D).

The concept of convex modeling provides an alternative way of analysis of uncertainty
when a limited amount of information is available. Convex models specify uncertainties in
the absence of detailed probabilistic information about the possible values of the variables
of interest. The effect of modeling uncertainty by using convex vs probabilistic models has
been studied by Ben-Haim (1994). The subjective design decisions which result when using
convex models do not involve the element of chance in the sense that the concept of
likelihood, which is inherent in probabilistic analyses, is not needed for convex models. In
the present paper, convex models are used to evaluate the minimum buckling load for
prismatic rigid bars resting on elastic springs of uncertain stiffness. The convex model is
expressed in terms of uncertainty in the spring constants. A first-order analysis is performed
assuming that the spectra of deviations of the spring constants vary within a convex
ellipsoidal set.

2. STRUCTURAL MODEL

A system of n rigid bars each of length L is connected to the left support and to each
other by  elastic frictionless rotational springs and is resting on » linear extensional elastic
springs modeling the foundation as shown in Fig. 1. This model can be used to approximate
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Fig. 2. Three-bar system with uncertain rotational and extensional springs : (a) system ; (b) deflected
position.

P

Fig. 3. Two-bar system with uncertain rotational and extensional springs : (a) system; (b) deflected
position.

a weightless prismatic bar on a Winkler foundation. If the axial compressive load P is
sufficiently large the system may buckle resulting in large rotations of the rotational springs.
One can obtain the buckling loads P; (i=1,...,N) where N = number of degrees of
freedom, using either bifurcation or energy approaches (Timoshenko and Gere, 1961 ;
Langhaar, 1962; Chen and Lui, 1987). In buckling analysis, only the lowest critical load,
P, is of interest. However, it should be noted that for the system of Fig. 2a the first mode
critical load is the lowest for a certain range of values of spring stiffnesses £, and k,, while
the second mode critical load is the lowest for another range of &, and %,.

The buckling load for the system shown in Fig. 1 can be found using the principle of
stationary total potential energy. Let V' be the total potential energy of a conservative
system with enumerable degrees of freedom (), such as the angles 6; in Fig. 2b or the
deflections &, in Fig. 3(b). The function V and its partial derivatives to the second-order are
assumed as continuous functions. Using Taylor’s theorem, the increment of V cor-
responding to increments /4, of angles 8, is

N N

N 1
AV =3 WViO)+5; 3 3 hhiVi(0)+0.(6)’, ®

=1 j=
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where the subscripts on ¥ denote partial derivatives and 6 stands for all @, collectively ; the
third term denotes higher order terms that can be neglected. According to the principle of
virtual work a necessary and sufficient condition for equilibrium is that the first term on
the right hand side of eqn (1) vanishes. The second term on the right hand side of eqn (1)
can also be expressed as

ZN“ hhVi(0) = i ,-,h,h,, (2)

H‘[\/]»<
vHMz

where g, = V,(#) and 6 = a point that is a solution of eqn (1). The coefficients a; are
functlons of the axial compressive load P. For a holonomic system, a necessary and sufficient
condition to obtain the critical load is that the term in eqn (2) is positive semidefinite
(Langhaar, 1962). This happens when the determinant of matrix [q;] vanishes. The result
is an expression for the buckling load in terms of the rotational and translational stiffnesses
and the length L.

3. CONVEX MODEL

Consider the stiffness of the rotational and extensional springs k; (i = 1,..,2#n) in Fig.
1 to be uncertain. The nominal values of the spring stiffnesses are k! (i = 1,...,2n) and the
deviations from these nominal values are {; (i = 1,...,2n). A convex model will be used to
model the uncertainty in the spring stiffnesses. In this method, one determines the minimum
buckling load when the uncertain values of the spring stiffnesses are confined within specified
bounds. The convex model requires less information to define a certain bound than the
information required to define a probability density function.

Ben-Haim and Elishakoff (1990), proposed a convex model in which the uncertain
deviation from the perfect shape of a shell in terms of its initial imperfections was represented
in terms of a convex set, R, of allowed functions. In order to minimize the buckling load,
an infinite set of initial profiles was adopted on the basis of available data and the minimum
of the buckling load on this set was sought. This infinite set of initial profiles is an extreme
point set, E, whose convex hull is R. The pair of sets E and R is called a convex model. The
ideas of extreme points and convex hulls are connected by a theorem which states that a
closed and bounded and convex set in Euclidean space is the convex hull of its extreme
points (e.g. Balakrishnan, 1981). The usefulness of this theorem is that the minimum of a
linear function on a convex set can be found by searching the set E of extreme points
instead of the entire domain. Instead of finding the buckling load at a certain reliability of
probabilistically defined imperfections, one finds the buckling load for any imperfection
shape constrained within a known bound.

A convex model is utilized for the buckling load of the structural model in Fig. I.
Assume that the deviations of the nominal values of the uncertain spring stiffnesses, i.e. {;
(i=1,...,2n), were measured and found to vary within the following ellipsoidal set:

Lo, 0) = {c; _Zl (;-) < 42}, 3)

where o = size parameter which determines the size of the ellipsoid and w, (i=1,...,2n)
are the semiaxes which determine the shape of the ellipsoid. The values of 2 and w,
(i=1,...,2n) can be obtained from measurements of the spring stiffnesses. Thus, as «

increases the uncertainty in the values of the spring stiffnesses is increased. When « = 0 the
problem reduces to a deterministic one since no uncertainty in the spring stiffnesses exists.
Equation (3) implies that the set Z(x, @) is the convex hull of the ellipsoidal shell given as
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Ao, 0, ..., w,,) = {C: i (C'> = ozz} 4)

w;

The convex model developed in eqns (3) and (4) uses an ellipsoidal set of uncertainty.
Other convex models are also possible such as an ““envelope-bounded™ function, in which
the deviations of the nominal values of the uncertain spring stiffnesses may vary between
lower and upper bounds.

4. FIRST-ORDER ANALYSIS USING THE CONVEX MODEL

The minimum buckling load of the system shown in Fig. 1 is required with respect to
the uncertainty in the spring stiffnesses as expressed by the convex model of eqns (3) and
(4). Define the function P(k) to represent the buckling load for the system of Fig. 1. The
length L of each bar is considered to be a deterministic constant and will not be included
in the variables. The buckling load for uncertain spring stiffnesses to first order in { is:

2n ",P ko‘
PO +0) = PR+ 3 © ;k )¢,
i=1 A3

(%)

where Kk are the normal values of the spring stiffnesses. It is desired to obtain the lower
limit of the buckling load as { varies on the ellipsodial set defined by eqn (3). Define the
first derivatives in eqn (5) as a vector D given by

DT = [GP(k”) oP(Kk") 6P(k°)} )

¢k, 7 ok, 77 0Ok,

where ( )T denotes the transpose of a vector. Following Ben-Haim and Eishakoff (1990),
the lower limit of the buckling load is given by minimizing the buckling load in eqn (5), on
the convex set Z given in eqn (3):

P(o,0) = gényifw, [P(k*)+D'(] 0

where @ = {w,, ..., w,,}. Equation (7) implies that the minimum of the linear functional
D'¢ must be obtained on the convex set Z(x, ). The minimum value of P,(x, w) will occur
on the set of extreme points of Z(x, @), which is the collection of vectors e = {e,, ..., e5,}
which satisfy eqn (4) identically.

Thus, the minimum buckling load becomes from eqn (7)

P, (2, ) = min [P(K’)+D'e] ®)

ecE(x.m)

Define Q as a 2n x 2n diagonal matrix whose nonzero elements are equal to 1/w?,
(i=1,...,2n). From eqn (4) the equality constraint can be restated as:

Cle) =e Qe—u? = 0. 9)

Using the method of Lagrange multipliers the Hamiltonian is defined for the min-
imization of D"e in eqn (7) as (Papalambros and Wilde, 1988)

H(e) = DTe+/.C(e), (10)

where / = Lagrange multiplier constant and D was defined in eqn (6). For the minimum,
the necessary conditions are:
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oH
e = D+2/Qe=0 (11a)
éiH:eTQe—ocz =0. (11b)
oA

It is obvious that eqn (11b) merely reproduces the constraint of eqn (9). Using eqns
(11a) and (11b), the minimum value of e is found as

Q- 'D
-y = (12)

The minimum buckling load using a first order analysis and the negative sign in eqn
(12) can be obtained from eqn (8) as

P (o, @) = P(K)—a_| Z (wi 61;(/:(_0)>2. (13)

In eqn (13), D and Q were substituted from eqns (6) and (9), respectively. It can be
observed that the analysis has yielded an explicit expression between the minimum buckling
load and the deviations from the nominal values of the spring stiffness constants as rep-
resented by the size parameter («), and the semiaxes (w, ..., ®,,). Equation (13) indicates
that the buckling load is sensitive to both the size and shape of the ellipsoid. Significant
reduction in the buckling load results from large sensitivity to springs whose semiaxes in
the uncertainty ellipsoid are large. In addition, the minimum buckling load is reduced
linearly with the overall size of the uncertainty in the spring constaints, «. To use the results
derived in eqn (13) one must know or have some estimate of « which could be obtained
from measurements. This is analogous to knowing the standard deviation magnitudes in
probabilistic analyses.

5. ILLUSTRATIVE EXAMPLES

Two representative examples are given using the first-order approximation of eqn (13)
for the buckling load of bars on elastic supports with uncertainty. These two examples are
chosen so that analytical expressions of the buckling load with uncertain parameters can
be obtained. For more complicated examples with a large number of degrees of freedom
one must use computer techniques to obtain the results.

Example 1—spring-supported two-bar system

A two-bar system as shown in Fig. 3a, with one rotational spring of stiffness constant
k, and two support springs of stiffness &, is analyzed. For this column, using , and & as
generalized coordinates as shown in Fig. 3b, the strain energy in the springs is

k &5 8
U= <z';+k2>7'+k272. (14)

The potential energy of the external force, P, is

P/ 83
n=z(o,52—5f—~22-) (15)

and the total potential energy of the system is
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Fig. 4. Buckling load ratio for two uncertainty levels for example 1 (x = 5).

V=U+II (16)
Setting the determinant of matrix [4;] defined in eqn (2) to zero gives the critical load
as
P.L
E =3(1+3B-5) (17a)
1

S=/1+58+28, (17b)

where 8 = k, L*/k, and P, = critical load. When the values of the spring stiffness constants
k, and k, are uncertain, eqn (13) can produce the minimum buckling load directly. Evalu-
ation of the partial derivatives dP(k°)/0k, and 0P(k°)/0k, required in eqn (13) gives the
minimum buckling load with consideration of uncertainty in k, and k, as

P/A(a’w)l‘_l z (1+ﬁ) g _(B_'_Sﬁz) 5
_kl___i[1+3ﬁ—S]—2\/W%[l—-—S }+W§[3ﬂ — J (18)

where W, = w\/k,, W, = w,/k,.ff and S were defined earlier with respect to eqn (17). Note
that W, and W, denote the normalized uncertainty semiaxes for the two spring constants
with respect to their nominal values of &k, and k,, respectively.

To understand the implications of eqn (18), consider the ratio of the buckling load
with uncertainty given by eqn (18) to that of the system without uncertainty given by eqn
(17) in dimensionless form

P.(x, o)

M =
Po

(19)

A plot of this ratio is given in Fig. 4 as a function of the ratio of the two normalized
stiffnesses, B. In Fig. 4 the values of the normalized semiaxes are assumed equal, i.e.
W, = W, = W; the value of the size parameter is assumed as « = 5. The nominal values
of k, and k, were assumed as (Ting, 1982): k§ = 14,949kN-mrad~' and
kS = 20,109kNm~"'. The length L was then varied to obtain the range of § displayed in
Fig. 4 for W, = W, = W. It can be observed that the buckling load when uncertainty is
present is reduced. For the case W = 0.01, the buckling load with uncertainty is between
95 and 96% of that of the system without uncertainty. For the case when W = 0.05, the
buckling load with uncertainty is between 75 and 80.3% of that of the system without
uncertainty. In both cases (W = 0.01 and W = 0.05) the value of § where the curves in Fig.
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Fig. 5. Buckling load ratio for example 1 (x = 5, § = 200).

4 attain a maximum is § = 0.77. The buckling load is a linear function of the size parameter,
a, as implied by eqn (18). However, as Fig. 5 shows, the influence of the uncertainty in the
translational springs (W,) is far greater than that of the rotational spring (W)). In Fig. 5,
f =200 and a = 5 are used. In effect, Fig. 5 implies that the reduction in the buckling load
when uncertainty is present for the structure of Fig. 3 is almost exclusively governed by the
uncertainty W, of the translational springs .

Example 2—spring-supported three-bar guided system

The bar system of Fig. 2a is considered with four rotational springs of stiffness &, and
two translational support springs of stiffness k,. Using 6, and 0, as the generalized coor-
dinates, as shown in Fig. 2b, the strain energy in the springs is

k,L?
U = k(367 +363 —40,0,) + ~5—(67 +63) (20)
and the potential energy of the external force, P, is
M= PL(B,0,— 07 —03). 2n

The potential energy of the system, ¥, is the summation of U and II. Evaluating the
determinant of matrix [« for ¥ defined in eqn (2) for this system, and setting it equal to
Zero gives

E=2+/3 (22a)
K\
}:L =1(10+p), (22b)

where 8 = k,L*/k,. The two expressions in eqns (22a) and (22b) are plotted against the
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Fig. 6. Bimodal buckling load for three-bar system of example 2.
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Fig. 7. Buckling load ratio for first mode of example 2 (x = 5, § = 1).

stiffness ratio f in Fig. 6. It can be seen that for § < 2 (line AB) the first buckling mode
(which is symmetric) governs with the buckling load as given in eqn (22a) ; for § > 2 (line
BC) the second buckling mode (which is antisymmetric) governs with the buckling load as
given in eqn (22b).

Case 1. First mode buckling. In this case, applying eqn (13) the minimum buckling load
with consideration of uncertainty in &, and &, is

P,(e, @)L ——— s
“f‘(z“’) = 24 f—a JAWI + WP, (23)

1
where W, = w/k, and W, = w,/k,. A plot of the ratio of eqns (23) to (22a) is shown in
Fig. 7for p =1, W, and W, from 0 to 5% and size parameter « = 5. The uncertainty in k,
as reflected by W, affects the buckling load considerably more than the uncertainty in &,
as reflected by W,. The reduction in the buckling load is a linear function of the size
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Fig. 8. Buckling load ratio for second mode of example 2 (z = 5, § = 450.204).

parameter, «, as can be seen from eqn (23). Also, when W, = W, = W, the value of
uncertainty semiaxis, W, is the slope of the straight line representing the buckling load
reduction.

Case 11. Second mode buckling. The minimum buckling load with consideration of
uncertainty in &, and k, is obtained using eqn (13) as

Po(x o)L
ki

TONT/2 1L Ti/2 22
= 1104 B—a /10007 + W3p%), (24)

where as before W, = w,/k, and W, = w-/k, are the normalized uncertainty semiaxes for
the two spring constants with respect to the nominal values of k, and k.. A plot of the ratio
of eqn (24) to (22b) for this case is shown in Fig. 8 for values of W, and W, from 0 to 5%,
size parameter « = 5, and f§ = 450.204. This value was chosen from actual data for beams
on elastic foundation (Ting, 1982). From this graph and eqn (24) it is obvious that the
uncertainty in k, affects the buckling load more than the uncertainty in &k, for f > 10. It is
interesting to note that whereas for the first mode buckling the uncertainty in the rotational
springs is dominant, in the second mode buckling (for > 10) the uncertainty in the
translational support springs is dominant. The reduction in the buckling load is a linear
function of the size parameter z and when the uncertainty semiaxes are equal
(W, = W, = W), Wrepresents the slope of the straight line reduction in the buckling load.
In comparing Cases I and II, it can be seen that for the same levels of uncertainty in the
spring constants, the reduction in the buckling load is more pronounced in the second-
mode buckling.

The difference between first mode buckling (Case I) and second mode buckling (Case
IT) depends on f and is shown in Fig. 9. Figure 9 shows the ratio of the buckling load with
uncertainty of eqns (23) and (24) as a percentage of the buckling load without uncertainty
of (22a) and (22b), respectively, for W, = W, = W =0.01, W=0.05 and 2= 5. It is
obvious that when uncertainty is present, the second mode buckling load is reduced differ-
ently from the first mode buckling load.
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Fig. 9. Buckling load ratio for both modes of example 2 as a function of the stiffness ratio (¢ = 5).
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Fig. 10. Buckling load for three-bar system of example 2 with and without uncertainty
(W, = W, = 0.05, % = 5).

Figure 9 suggests a type of imperfection-sensitive bifurcation. The transition point, 8,
from first to second mode buckling when uncertainty is present, is found by equating the
values of P,; and P,, in eqns (23) and (24), respectively. For W, = W, = W =0.01 the
transition point is at P, and its value is 8, = 1.955; when W, = W, = W = 0.05 the tran-
sition point is at P; and its value is §, = 1.721. Points P, and P, in Fig. 9 are the transition
points from first to second mode buckling for the system without uncertainty (8, = 2).

Since Fig. 9 shows the buckling load ratio, rather than the buckling load, it is rather
difficult to illustrate what occurs near § = 2. The behavior of the imperfection-sensitive
bifurcation near § = 2 from eqns (22a) and (22b) for the buckling load without uncertainty
and from eqns (23) and (24) for the buckling load with uncertainty is shown in Fig. 10.
The uncertainty is defined in terms of the normalized uncertainty semiaxes
W, = W, =W = 0.05 and the size parameter « = 5. Figure 10 shows that the buckling
load is reduced significantly when uncertainty is present. In addition, the transition point
from first to second mode buckling occurs at a lower value of §, = 1.721. If the values of
the uncertainty semiaxes are assumed equal, i.e. W, = W, = W, from eqns (23) and (24)
the values of the transition stiffness ratios are a function of the product «W. Figure 11
shows the values of the transition stiffness ratios from first to second mode buckling, when
uncertainty is present, as a function of xW. It is obvious that the transition from first to
second mode buckling occurs for lower values of 8, when uncertainty is present.

3AS 33:9-D
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Fig. 11. Transition stiffness ratio from first-mode to second-mode buckling for three-bar system of
example 2 in the presence of uncertainty.

1.7

6. CONCLUDING REMARKS

The buckling load of weightless prismatic bars in the presence of uncertainty in the
rotational connecting springs and translational support spring elements is evaluated using
a nonprobabilistic convex model. Explicit expressions are derived for the buckling load in
terms of the deviations of the rotational and translational spring stiffness constants from
their nominal values. The uncertainty in the stiffness constants of the rotational and
translational springs is expressed as an ellipsoidal set defined in terms of the uncertainty of
each spring as a semiaxis of the ellipsoid. The convex model is defined in terms of a size
parameter which determines the size of the ellipsoidal set. As the size parameter increases,
the uncertainty in the values of the spring constants is increased. If the size parameter
equals zero the problem is reduced to a deterministic buckling problem. This makes the
method attractive since it does not require probabilistic distribution descriptions of the
uncertain parameters. Results from a first-order analysis show that the reduction in the
buckling load, when uncertainty in the spring stiffnesses is present, is a linear function of
the size parameter and a nonlinear function of the semiaxes of the uncertainty ellipsoid.
The reduction in the buckling load varies significantly with the uncertainty of the spring
constants.

For systems of bars for which the buckling mode depends on the values of the
translational and rotational spring constants, different reductions in the buckling load
result for the same level of uncertainty in the stiffness of the spring elements. For a certain
buckling mode the uncertainty in the rotational springs is dominant, while for another
mode the uncertainty in the translational springs is dominant in determining the buckling
load reduction. The transition stiffness ratio at which buckling from one mode switches to
the other was found in terms of the uncertainty semiaxes and the size parameter. The value
of the transition stiffness ratio is reduced as the uncertainty is increased. It is interesting
that this bifurcation from first to second mode buckling as a result of substrate uncertainty
is so readily analyzed using the convex model approach.
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